Main Article Content

Muttaqin Muttaqin
Rehan Rizkyta Peranginangin


The use of fossil-based fuels has serious implications on the environmental issues because it will increase the emission of carbon dioxide (CO2) gas which will contribute on the global warming. Therefore, it is necessary to develop technologies, methods or materials that can capture or storage CO2 levels in the air. One of the materials that can be used as a CO2 gas absorbent is a material called a metal organic framework (MOF). MOF with a Cu metal core and a ligand, 1,4-benzene dicarboxylic acid will form a porous material with a triclinic crystal structure. This material is called cupper-benzene dicarboxylate (CuBDC). This study aims to synthesize and modify CuBDC with ethylenediamine compound. The characterization results show that CuBDC and CuBDC-modification have been confirmed based on the analysis of Fourier transform infrared spectrophotometer (FTIR) and X-ray diffraction (XRD). The synthesized MOFs have good thermal resistance where the main-frame structure can withstand temperatures up to 300's C. Modified-CuBDC has a much larger surface area, pore diameter and pore volume compared to CuBDC so that modified-CuBDC has the potential to be used as an absorbent material for CO2 gas produced by combustion by the power generation industry or other industries.

Article Details

How to Cite


1. Quadrelli, R., Peterson, S. (2007). The energy-climate challenge: Recent trends in CO¬2 emissions from fuel combustion. Energy Policy 35, 5938–5952.
2. Yang, H., Yuan, Y., Chi, S., Tsang, E. (2012). Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture. Chem. Eng. J. 185–186, 374–379.
3. Granite, E.J., Pennline, H.W. (2002). Photochemical removal of mercury from flue gas. Ind. Eng. Chem. Res. 41, 5470–5476.
4. Rochelle, G. T. (2009). Amine scrubbing for CO2 capture. Science 325, 1652–1654. DOI: 10.1126/science.1176731.
5. Campbell, M. (2014). Technology Innovation & Advancements for Shell Cansolv CO2 capture solvents. Energy Procedia, 2014, 63, 801–807.
6. Singh, A., Ste´phenne, K. (2014). Shell Cansolv CO2 capture technology: Achievement from First Commercial Plant. Energy Procedia, 63, 1678 – 1685.
7. Danckwerts, P.V. (1979). The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 34, 443–446.
8. Caplow, M. (1968). Kinetics of carbamate formation and breakdown. J. Am. Chem. Soc. 90, 6795–6803.
9. Plaza, M.G., et al. (2011). Evaluation of the cyclic capacity of low-cost carbon adsorbents for post-combustion CO¬2 capture. Energy Procedia, 4, 1228 - 1234.
10. Li, G., Xiao, P., Webley, P., Zhang, J., Singh, R. (2009). Competition of CO2/H2O in adsorption based CO2 Capture. Energy Procedia 1, 1123 – 1130.
11. Bollini, P., Stephanie, A., Didas., Jones, C. W. (2011). Amine-oxide hybride materials for acid gas separations. J. Mater. Chem. 21,15100–15120. DOI: 10.1039/c1jm12522b.
12. Harlickand, P.J.E., Sayari, A. (2007). Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance Ind. Eng. Chem. Res. 46, 446–458.
13. Tanthana, J., Chuang, S.S.C. (2010). In situ infrared study of the role of PEG in stabilizing silica-supported amines for CO2 capture. ChemSusChem 3, 957–964. 10.1002/cssc.201000090.
14. Ojeda, M., et al. (2017). Novel amine-impregnated mesostructured silica materials for CO2 capture. Energy Procedia, 114, 2252-2258.
15. Mason, J. A., et al. (2015). Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803. DOI: 10.1021/jacs.5b00838.
16. Lin, Y., Kong, C., Chen, L. (2016). Amine-functionalized metal-organic frameworks: structure, synthesis and application. RSC Advances 6, 32598–32614.
17. Lin, Y., Yan, Q., Kong, C., Chen, L. (2013). Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 3, 1859-1865. srep01859.
18. Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M., Yaghi, O. M. (2015). Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 127, 1504-1518. DOI: 10.1021/ja045123o.
19. Dietzel, P. D. C., Morita, Y., Blom, R., Fjellvåg, H. (2005). An in situ high-temperature single crystal investigation of dehydrated metal-organic framework compound and field-induced magnetization of one-dimensionalmetal-organic chains. Angew. Chem., Int. Ed. 44, 6354-6358. DOI: 10.1002/anie.200501508.
20. Caskey, S. R., Wong-Foy, A. G, Matzger, A. J. (2008). Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870-10871. doi: 10.1021/ja8036096.
21. Carson, C. G., et al. (2009). Synthesis and structure characterization of copper terephthalate metal organic frameworks. Eur. J. Inorg. Chem, 2338–2343. DOI: 10.1002/ejic.200801224.
22. Mori, W., Sato, T., Ohmura, T., Kato, C, N., Takei, T. (2005). Functional microporous materials of metal carboxylate: Gas-occlusion properties and catalytic activities. Journal of Solid State Chemistry, 178, 2555-2572. doi:10.1016/j.jssc.2005.07.009.
23. Carson, C. G et al. (2014). Structure solution from powder diffraction of copper 1,4 Benzenedicarboxylate. Eur. J. Inorg. Chem, 2140–2145. DOI:10.1002/ejic.201301543.
24. Dudley, R. J., et al. (1974). A Correlation of The Copper-Nitrogen Bond-Lengths, Infrared Spectra and Electronic Spectra of Some Axial Tetraamines and Pentaamines of Copper (II) Ion. J. Inorg. Nucl. Chem, 36, 1947-1950.
25. McDonald, T. M., et al. (2015). Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature, 519, 303 – 308.